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Abstract 

Using the formalism of superconnections, we show the existence of a bosonic action functional 
for the standard K-cycle in noncommutative geometry, giving rise, through the spectral action 
principle, only to the Einstein gravity and Standard Model Yang-Mills-Higgs terms. 
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1. Introduction 

The approaches to fundamental interactions based on noncommutative geometry (NCG) 
have so far yielded action functionals both for elementary particles (tying together the 
gauge bosons and the Higgs sector) and for gravity [l-6]. The challenge of unifying the 
Yang-Mills and gravitational actions was taken up in [7] and subsequently Chamseddine 
and Connes [8,9] put forward a model doing so by means of a so-called universal action 
functional. The NCG method is based on the hypothesis that fundamental interactions are 
coded in the invariants of a suitably generalized Dirac operator, involving space-time and 
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internal variables. This bold introduction of spectral geometry in physics has important 
consequences, even for classical relativity [lo]. In the Chamseddine-Connes (CC) ansatz, 
particle species are taken as given. Setting the fermionic action is equivalent to fixing a “real 
K-cycle”comprising the generalized Dirac operator, grading and conjugation for the theory. 
The bosonic action is constructed out of the K-cycle. Papers [8,9] start from the K-cycle 
currently [2,3] associated to the Standard Model (or standard K-cycle) and concentrate 
on aspects of that construction depending only weakly on that choice; thus the adjective 
“universal”. 

The CC approach has two important merits, namely, the possibility of a genuine unifi- 
cation of particle theories and gravity and the introduction of a renormalization process to 
control the mix of physical scales involved. Nonetheless, there are some difficulties that 
remain to be addressed. First of all, the particular approach taken by Chamseddine and 
Connes raises mathematical questions about the information content of the asymptotic de- 
velopments used [ 1 I]. Secondly, their action has a number of extra terms one could perhaps 
do without. The leading term is a huge cosmological constant that has to be “renormalized 
away” with fine tuning. The gravity part of the third term contribution, comprising a Weyl 
gravity term and a term coupling gravity with the Higgs held, is conformally invariant. It is 
unclear at present if the latter is more an asset or a liability in black hole dynamics and in 
cosmology [ 121. Also, the renormalization scheme proposed in [8,9] exhibits some surpris- 
ing traits. The CC Lagrangian is neither renormalizable strictu sensu, nor unitary within the 
usual perturbation theory [ 13,141. The first objection is not considered serious in the modern 
effective field approach to quantum field theory [ 151. The second objection is dismissed on 
the grounds that we expect the product geometry to be replaced by a truly noncommutative 
geometry at some energy scale lower than the Planck mass. In view of the fact that the most 
natural coefficients for the boson fields they obtain yield SU(S)-type relations for the chro- 
modynamical and flavourdynamical coupling constants, Chamseddine and Connes chose a 
cutoff scale of the order lOI GeV; they ran in conflict with the value of Newton’s constant. 
We really do not know the energy scale at which the NCG relations can claim validity, as 
the theory still lacks a physical unifying mechanism at the IO’” GeV or other scale. 

Models based on the “universal” functional concept are also aesthetically unappealing to 
some. One can hardly help being mesmerized by the beauty of the results of [5,6], in which 
a particular regularized functional, the Wodzicki residue of the inverse squared (ordinary) 
Dirac operator, gives directly the Einstein-Hilbert functional for gravity. The idea of then 
keeping the Wodzicki functional and further modifying the Dirac operator, in such a way 
that all the action terms of the Standard Model (SM) plus gravity - and only them - are 
obtained, was proposed by Ackermann [ 161 and spelled out recently by Tolksdorf [ 171. The 
Ackermann-Tolksdorf (AT) formalism - that falls outside NCG - has its own drawbacks, 
however, their manipulation of the Dirac operator physically amounts to a nonminimal 
coupling of the fermions and the gauge fields, that would give rise to a direct interaction 
between two fermions and two bosons, which has never been seen. Moreover, the fermion 
doubling demonstrated in [ 181 is compounded. 

Underlying the attempt of Ackermann and Tolksdorf, there is perhaps the impression that 
a pure, combined Einstein-SM Lagrangian cannot be obtained within NCG. Nevertheless, 
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using Quillen’s superconnection formalism as a tool, in this paper we show that one can 
obtain the pure Einstein-SM Lagrangian at the tree level from the same standard K-cycle 
used by Chamseddine and Connes. 

2. Action functionals in NCG 

An NCG model is determined by an algebra d having a representation on a Hilbert space 
%, on which there also act a grading operator y, a conjugation J and a self-adjoint operator 
D, odd with respect to y and commuting with J, with suitable properties vis-a-vis the 
algebra; in particular one requires that the operators [D, a] commute with Jb J-' , for a, b 
in JI. This five-term package [2,3] is called a “spectral triple” or a “real K-cycle”. 

As stated in [7], a commutative K-cycle is just the spectral version of a Riemannian spin 
manifold (a compact space-time, able to uphold fermions, with Euclidean signature). Let 
M be such a manifold, with dimension n; we take A = C’Oc (M), I? = L*(S), the space 
of square-integrable spinors over M, y = ys, J is charge conjugation of the spinors and 
in this case the Dirac operator is the usual one, including the spin connection: D = p = 

~“(8, + w<,), where w is the spin connection l-form. The metric tensor on M (and then its 
functionals) is completely determined by the K-cycle. 

At the other extreme, A = & could be finite-dimensional but noncommutative, tiF 
also finite-dimensional and graded, in this case D = DF, an odd matrix; this K-cycle 
describes a (noncommutative) internal space. In the applications to SM the entries of DF are 
Yukawa-Kobayashi-Maskawa parameters: they are seen as part and parcel of the geometry. 

All K-cycles employed in NCG till now are “mildly noncommutative” product K-cycles, 
where d = Cx (bf) @ &, ?f = L2(s) @ fiF and the “free” Dirac operator is given by 
D = Dfree = ~“3, @ I + 1 @ DF. We call the second piece a Dirac-Yukawa operator. To 
turn the NCG machinery, one needs to introduce the noncommutative gauge potential A,,, 
a general self-adjoint element of the form c a [ Df,,, , b] corresponding to the ‘fluctuations” 
of the internal degrees of freedom. To this one adds the spin connection. For the standard 
K-cycle, dF = W @ C @ Mx(C), and in that way one reproduces the fermionic part of the 
SM Lagrangian. 

According to the spectral action principle, the bosonic action B depends on the whole 
K-cycle; we shall write B[ D] for short. One postulates the Lagrangian density 

C = ($ I f’DP$) + B[Dl, 

where P projects on the subspace of the physical Weyl fermions. We shall concentrate on 
B[ D]. This bosonic part in the original model and its subsequent modifications was fabri- 
cated following a “differential” path as follows: given the noncommutative gauge potential 
A,,, one constructed its curvature F,,, = [D, A,,] + AZ, (a far from straightforward task, 
due to the ambiguity of the NCG differential structure), and the action was taken to be 
proportional tof F2ds4 (see further on for the definition of the noncommutative integral 
f ). In the case of the standard K-cycle, this indeed defines the SM Yang-Mills action and 
the action for the Higgs field, including the usually ad hoc quartic potential. Thus “low 
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energy” particle interactions were unified in a single term, the square of a geometric object, 
excluding Einstein gravity. 

In this paper, we follow the CC approach in exploring a fully “integral” path for the 
construction of B [D]. 

Due to the product structure of the K-cycle, the fermionic states in NCG so far always 
live in spaces of sections of superbundles. We formalize this last remark. Suppose, for 
definiteness, that M is an even-dimensional manifold, with a spin structure; let S be the 
spinor bundle; write Cl A4 for the bundle over M whose fibre at x is the complex Clifford 
algebra Cl(TX*M); the smooth sections of these bundles form, respectively, the space of 
spinors r(S) and the algebra C := T(ClM). This algebra acts irreducibly on T(S), i.e., 
we have C 2 End S; this can be taken as defining the spin structure [ 191. If we think of tiF 
as the trivial bundle tiF x M, then w can be identified to the space of sections r(S @ tiF) 
of the tensor product superbundle S @ tit?. Any superbundle E = Ef @ E- on which a 
graded action of Cl M is defined (so C acts on its space of sections) is called a Clifford 
module. Denote by c the action of C on S; c~ E C acts on T(S @ tiF) by 

The passage from S to S @ ‘FIF is an instance of “twisting” of the spinor bundle. On a 
spin manifold, any Clifford module F(E) comes from a twisting [20]: by Schur’s lemma, 
any map from f(S) to r(E) that commutes with the Clifford action is of the form I,!J H 
$ @ w, for w a section of the (graded) bundle of intertwining maps W := Homct M(S, E). 

Moreover, any endomorphism of r( E) that commutes with the Clifford action is of the form 
I,? @ w H I/ @ Tw for some bundle map T: W + W; in other words, Endct M E 2 1 @ 
End W. The whole matrix bundle End E is generated by the subbundle Cl M 2 End S @ 1, 
acting by the spin representation, and by its commutator 1 @ End W, so we can write 
EndE zClM@EndW. 

The analogue of the volume element in NCG is the operator D-” =: ds”. And pertinent 
operators are realized as pseudodifferential operators on the spaces of sections. Extending 
previous definitions by Connes [ 11, we introduce a noncommutative integral based on the 
Wodzicki residue [21]: 

f 
p&n := (iiT - ‘I! 

2(2X)42 
Wres P/DIP” 

._ ($I - l)! 

.- 2(2X )42 s 
tro_,2(PIDI-‘2)(x,~)d{dx. 

S*M 

Here o-n (A) denotes the (-n)th order piece of the complete symbol of A and the numerical 
coefficient is appropriate for an even-dimensional manifold. The Wodzicki residue is known 
to be the only trace on the space of pseudodifferential operators. The noncommutative 
integralf is a trace on a very large space of operators [22,23]. The definition is justified by 
the fact that, for the archetypical commutative K-cycle one has 
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for f E COO(M), represented as a multiplication operator on L2(S). From now on we take 
n = 4. 

It was natural, however, for NCG to be asked about the gravitational interaction, which, 
after all, is nothing but the manifestation of the commutative geometry of space-time. But 
it turns out that to use the operators D = @ + 1 @ DF, or D = J + 1 @ DF i.e., to consider 
the “free” Dirac operator as comprising the spin connection or not, is immaterial for that 
purpose, as any reference to the latter vanishes from the noncommutative gauge potential. 
The first important step in the direction of connecting NCG with gravitational physics 
was carried out independently by Kastler [5] and Kalau and Walze [6] who, following a 
suggestion by Connes, found that the Einstein-Hilbert action is given by 

f 
$J2ds4 c( Wres pe2. 

If, in the hope to describe the mix of gravity with the gauge boson interaction, instead 
of @, one uses in this formula the full, gauge covariant operator D = JO + 1 @ DF + 

A,, + JA,,J-* , one finds only a term proportional to the square of the Higgs field 4 [6], 
in addition to the gravitational curvature term. We were thus stuck in a peculiar situation: 
one form of the action gave the Yang-Mills term, but not the gravitational part; the situation 
was inverted for the second form of the action, which only gives the gravitational part. 

On the other hand, the Chamseddine-Connes action: 

G”Srn 
f0- 

CGr f ch14i2 
14 + .f2 

12 
+ ~~[CH~~~~+CYMH~D~~IID'~~ 

+CYM(F~~F’~“)YM + CwC2 + Ccwl~121 + 0 (12) (1) 

has terms of different orders; the first (cosmological) one is essentially Wres jZ-4; the 
second one is again Wres P-2; the third (carrying the Weyl gravity term) and subsequent 
ones are not Wodzicki residues, but generalized moments [ 111. The length scale I is the 
inverse of the energy scale and the numerical coefficients fn, f2, f4 are indeterminate. The 
total action contains terms such as the Riemann scalar curvature r and mass term of the 
Higgs potential which are quadratic in the fields (metric-graviton, Higgs and vector bosons), 
while the higher order terms like the kinetic energy of Yang-Mills fields and the rest of the 
Higgs potential are quartic or contain derivatives in the fields. 

We next demonstrate, on application of Quillen’s theory of superconnections [24] to 
the standard K-cycle, and provided that the internal and external degrees of freedom can 

be cleanly separated, the existence of a functional of the K-cycle containing only the 
Einstein-Hilbert and Yang-Mills-Higgs terms, on the same footing. 

3. Quillen’s superconnections 

A key ingredient in our proposed action is the fact that the generalized Dirac operators 
of product K-cycles arise from superconnections that are compatible with the Clifford 
action [20]. Superconnections have been already used in NCG in [25], based on earlier 
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work of Ne’eman and Stemberg [26], in a slightly different context and at the Yang-Mills 
level only. We now briefly describe some key features of superconnections in reference to 
Dirac operators. 

A superconnection on the superbundle E is any odd linear operator A on the module of 
E-valued differential forms A(A4, E), graded by the sum of the grading on the scalar-valued 
forms A(M) and the grading on E, that satisfies the Leibniz rule 

[A. PI = dB forg E A(M), (2) 

where the commutator is graded. If V is any ordinary connection on E, A - V commutes 
with exterior products and so is itself an exterior product by an odd matrix-valued form: 

(A-V)[=a!r\< forsomecrEAA-(M,EndE). 

This yields the general recipe 

where o2k E A2k(M, End- E) and c;YZk+t E A 2k+’ (M, End+ E); we have absorbed the 
1 -form component cx 1 in the connection. In particular, cxo is just an odd matrix-valued bundle 
map: ~0 E r(End- E). 

The Jacobi identity shows that if 8 is a matrix-valued form, then 

[[A, @I, Bl = [A, LO, Bll + C-1)“’ ‘“‘kW Ql = 0 

for any p in A(M), so [A, 01 is a multiplication operator. In this way the formula (A0) A< := 
[A, 0]{ serves to define the covariant derivative A8 in A(M. End E); as operators, A0 
= [A, Q]. Since A is odd, we have [A, A] = 2A2, and the Jacobi identity yields 2 [A, [A, T]] 
= [[A, A], T] = [2A2, T] for any operator T. In particular, [A2, B] = [A, [A, #I]] = 
d(dB) = 0 for any /I, so A2 = Fa, in A+(M, End E): this is the curvature of the supercon- 
nection A, and it satisfies the Bianchi identity AFA = [A, F,q] = [A, A21 = 0. 

Following [20], we say that A is a Clifford superconnection if it satisfies a second Leibniz 
rule, involving the Clifford action: 

[A, c(B)] = c(Vg) for each /I E A(M), (3) 

where V is the Levi-Civita connection on the cotangent bundle. On a local orthonormal 
basis of l-forms 8,, one has V,P = 8,Q“ - r$,Qh (we use throughout Greek indexes 
for coordinate bases and Latin indexes for vierbeins). The antisymmetric matrices oP with 
entries -r,h, (defined on a local chart U) make up a Lie algebra-valued l-form o in 
A’(U. so(T*M)), and V = d + (Y over U. 

The spin connection Vs has property (3). Locally, Vs = d + w = d + b(a), where 
&: SO(T*M) + Cl M is the infinitesimal spin representation of the Lie algebra of the 
orthogonal group, &(a,) = -ir,h, ya yb. Its curvature is (Vs)2 = fi(da + cr A cu) = 
fi( R), where R E A2(M, So( T* M)) is the Riemann curvature tensor: 

b(R) = $bavo yn Y ‘dx’ A dxO with yU E c(P). (4) 
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The basic property of the spin representation [27] is that 

335 

[MT), cm1 = 4TB) (3 

when B E d'(M) = T(T*M) and T E r(so(T*M)). This can be seen directly, by check- 
ing the identity i[y’ yb, y”] = yl”Jblc , which entails [;Ti ya y’, fit y’] = T,b/$, y” if T 
is antisymmetric. (For that, notice that the commutator [y” yb, y’] is zero whenever a = b 
or the three indices are distinct.) 

On a twisted bundle E = S @ W, there is the Clifford connection Vs @ 1. If A is any 
Clifford superconnection, then A - Vs @ 1 commutes with the Clifford action, and therefore 
it is of the form 1 @ B where B is an odd operator on d(M, W) that satisfies a Leibniz rule 
like (2). In other words, the most general Clifford superconnection is of the form 

A=Vs@l+l@B, (6) 

where B is any superconnection on the twisting bundle W. That is, the superconnection on 
a space which is the product of a continuous Riemannian spin geometry times a (noncom- 
mutative) internal geometry splits into the usual spin connection which acts trivially on the 
internal part, plus a superconnection which acts only on the internal part. 

4. The superconnection for the standard K-cycle 

We can identify the algebra T(C1 M) with the algebra of forms d(M) by the isomorphism 
c(B) H c(/I)l; the inverse map Q : d(M) + f (Cl M) - denoted c by [20], who call 
it “quantization” - allows us to Clifford-multiply by forms. For instance, with up”‘) = 
i[c(dxw), c(dx”)] = k[yfi. y”], we have yp y” 1 = dxp A dx” + ,I$~“, so that 

Q(&$ A dx”) = -gp” + ~‘1 y” = CL”‘. 

Let B = lEba + BtKdxjl + BzPu dxw A dx” +. . be a superconnection on W. We can now 
define a Dirac operator associated to the Clifford superconnection A of (6) by 

D := p ~8 1 + Bo + yiL IBt/1 + c+” lE& + . (7) 

It is clear that Dirac operators in this sense are just quantizations of superconnections. There 
is a one-to-one correspondence between Dirac operators compatible with a given Clifford 
action and Clifford superconnections [20]; for example, @j = Q(V’). In particular, D and 
A have the same information. 

All superconnections considered in [24] are of the form Bo + V. This goes well with 
Connes’ formalism for product K-cycles, as in the present context the superconnection 
pair (Bo, Bt ) and noncommutative differential 1 -forms are one and the same thing - with 
the degree 0 term corresponding to the Dirac-Yukawa operator. On the other hand, the AT 
formalism employs superconnections with forms up to degree 2. 

Now, in view of Eq. (6) and the fact that [OS @ 1, 1 @ IES] = 0, the curvature of A splits 
as 

A2 = /i(R) @ 1 + 1 @ B* =: /IL(R) @ 1 + 1 @ F5. (8) 
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One can also remark [20] that, from the Leibniz rule (3): 

[A”. c(/?)] = [A, [A, c(/!?)ll = c(V”B) = c(RB), 

whereas [p(R). c(B)] = c(RB) f rom (5). With regard to the factorization End E z Cl M @ 
End IV, b(R) acts by Clifford multiplications and we can write it as ,Q(R) @ 1. Thus 
A2 - b(R) @ 1 commutes with all c(p) and so it lies in A+(M, 1 @End W). In conclusion, 
the quantity FB equals A2 - h(R), FB is an “internal” curvature and a functional of D 
whenever R is. Now, the Riemann tensor R is a functional of p [7]. Therefore FB is a 
functional of the pair (D. g). We henceforth write F[ D] for short. 

It remains to compute F [ D] for the standard K-cycle. Recall that there W = ?fF and one 
has 8 = Bo + BI, where Bu holds the Higgs term and Bl contains the usual Yang-Mills 
terms. It is not hard to see that F[D] = lE# + [BI , Bo] + Bf, as an orthogonal direct sum 
of terms. 

The representation of w @ @ $ Mj(@) on %F decomposes into representations on the 
lepton, quark, antilepton and antiquark sectors: ?&z = tiHFf $ ti; = ti: @ ‘FI: @ ti,- @ ti;, 

each of which in turn decomposes according to chirality: ‘XT = X& $ ;Ftz and so on. For 
the quark sector and the lepton sector with massless neutrinos, we have, respectively, 

In this basis, and on applying the “unimodularity condition” [3], the superconnection asso- 
ciated to D corresponds to: 

a,, + 2ia,, 0 0 

@II, = 0 a, + iCaLL - f&J -ib&, ‘8 l/v. 
0 -ib:, aw + ita,, - h&j 

(9) 
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where the h, are the Gell-Mann matrices and 41, $2 denote the (normalized) components 
of the Higgs field. 

The rest is routine; actually what we do is only superficially different from what is done 
in [28], and we can read off what we need as a subset of their computations. (There are a 
few misprints in that reference, but they do not affect the final results.) Finally, we have 

tr F]D12 = CH]$]~ f CYMHiDF$iiDI-L+i + CYM(FpvFI*“)YM, 

where 

D,, := ap - iigta, - iig2 t . 6, 

with an obvious notation. Our nonperturbative approach gives, for the surviving terms, 
exactly the same cneficients CH, CYMH, CYM as the CC Lagrangian. We shall not bother 
to write them down. 

5. A particular action functional 

It should be noted that F[D] # F,,. The missing term in F[D] is the mass term in the 
Higgs sector. (Actually, without fermion families replication, the whole Higgs sector in F,, 
is simply zero. The present integral formulation eliminates this quirk of the differential one, 
at the price of withdrawing the tentative claim [3,22] of an NCG-based explanation for such 
replication.) That missing term is provided by the already considered-f D2ds4 term, that 
gives us, besides the Einstein-Hilbert Lagrangian, the term in the square of the Higgs field: 
both pieces of the puzzle fit together! 

In conclusion, the bosonic action is schematically written as 

f 
(D* + F’[D12) d.s4 

We must allow in the first summand the length scale 1, for dimensional reasons; and an 
indeterminate numerical coefficient f4 in the second. Therefore 

B[D] = 
.f 

(lK2D2 + f4F[D]‘) ds4 

= & Wres(lP2D2 + f4F[D12) Dp4 

= & Wres1-2D-2 + f4 
s 

(tr F[D12). 

M 

Upon using D given by 

D := @ ~3 1 + 80 + yc( BI,, (I 1) 

with lE!o, IEIt given by (9) one finds the full bosonic action of SM plus gravity. 
The action (10) is quite simple and has a very familiar look. There is a “kinetic” term 

given by the square of the derivative (momentum) term. This term provides the action more 
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intrinsically connected with the nature of space-time. Then, in the presence of an internal 
structure, there is a “potential” term, which is quadratic, another familiar occurrence. As 
argued in [29], one can get more freedom by allowing the quark and the lepton sectors 
to enter with different coefficients. This redefinition of the noncommutative integral is 
permissible by the existence of a superselection rule. Then, one can, perhaps, by adjusting 
properly the theory to the known SM parameters, indulge in a new round of that favourite 
pastime of noncommutative geometers, Higgs particle mass speculation. 

The CC formula (1) embodies a theorem about the structure of action functionals in 
Connes’ NCG. Note that the cosmological term can be disposed of by choosing a particular 
functional for which ,fu = 0. However, the result by Chamseddine and Connes implies 
that the Yang-Mills terms of the SM are ineluctably accompanied, at the tree level, by the 
conformal piece that includes the Weyl tensor term and the coupling between the scalar 
curvature and the Higgs field. How is it, then, that the result of this paper appears to be an 
exception? The action principle we invoke is not quite the same as the one by Chamseddine 
and Connes; the conceptual distinction lies in that, whereas the CC functional depends on the 
Dirac operator (in the occurrence (11)) taken as cl kvhole, we use the possibility of splitting 
the operator into a “space-time” and an “internal” part. Whether the extra terms present in 
the CC perturbative development are a necessity or not is to be decided by quantum field 
theoretical considerations and/or experiment. 
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